Advertisements
Advertisements
प्रश्न
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी व 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल तर मोठ्या त्रिकोणाची संगत बाजू काढा.
उत्तर
समजा दोन समरूप त्रिकोणांची क्षेत्रफळे A1 आणि A2 आहेत.
A1 = 225 चौसेमी, A2 = 81 चौसेमी
समजा, मोठ्या व लहान त्रिकोणांच्या संगत बाजू अनुक्रमे s1 व s2 आहेत.
s1 = 12 सेमी
`"A"_1/"A"_2 = ("s"_1^2)/("s"_2^2)` .......[समरूप त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर]
∴ `225/81 = ("s"_1^2)/12^2`
∴ `"s"_1^2 = (225 xx 12^2)/81`
∴ s1 = `(15 xx 12)/9` ......[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ s1 = 20 सेमी
∴ मोठ्या त्रिकोणाची संगत बाजू २० सेमी आहे.
APPEARS IN
संबंधित प्रश्न
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 3 : 5 आहे, तर त्यांच्या क्षेत्रफळांचे गुणोत्तर काढा.
ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.
`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`
Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.
∆ABC ~ ∆LMN आणि ∠B = 40° तर ∠M चे माप किती? कारण लिहा.
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.
जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.
जर ΔABC ∼ ΔPQR आणि `("A"(Delta"ABC"))/(A(Delta"PQR")) = 16/25` तर AB : PQ किती?
ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.