हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 3 : 5 आहे, तर त्यांच्या क्षेत्रफळांचे गुणोत्तर काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 3 : 5 आहे, तर त्यांच्या क्षेत्रफळांचे गुणोत्तर काढा.

योग

उत्तर

समजा, समरूप त्रिकोणांच्या संगत बाजू s1 आणि s2 आहेत.

समजा A1 आणि A2 ही त्यांची संगत क्षेत्रफळे आहेत.

s1 : s2 = 3 : 5 .............[पक्ष]

∴ `"s"_1/"s"_2 = 3/5`  .........(i)

`"A"_1/"A"_2 = ("s"_1^2)/("s"_2^2)` .......[समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]

= `("s"_1/"s"_2)^2`

= `(3/5)^2`   .......[(i) वरून]

= `9/25` 

∴ त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर = 9 : 25

shaalaa.com
समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: समरूपता - सरावसंच 1.4 [पृष्ठ २५]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 1 समरूपता
सरावसंच 1.4 | Q 1. | पृष्ठ २५

संबंधित प्रश्न

ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.


जर ΔABC ~ ΔPQR आणि AB : PQ = 3:4, तर A(ΔABC) : A(ΔPQR) किती?


दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे 9 : 25 गुणोत्तर असेल, तर त्यांच्या संगत बाजूंचे गुणोत्तर किती?


दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?


∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?


∆ABC मध्ये, AP लंब BC व BQ लंब AC, B-P-C, A-Q-C, तर ∆CPA ~ ∆CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 असल्यास AC ची किंमत काढा. 

∆CPA व ∆CQB मध्ये,

∠CPA ≅ `square` ...........[प्रत्येकी 90°]

∠ACP ≅ `square` ...........[सामाईक कोन]

∆CPA ~ ∆CQB ............[`square` समरूपता कसोटी]

`"AP"/"BQ" = square/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]

`7/8 = square/12`

AC × `square` = 7 × 12

AC = 10.5

 


जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.


ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.


ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.


जर ∆ABC ~ ∆PQR आणि AB : PQ = 2 : 3, तर `("A" (∆"ABC"))/("A"(∆"PQR"))` ची किंमत काढा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×