Advertisements
Advertisements
प्रश्न
ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.
`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`
उत्तर
`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/("PQ"^2) = 2^2/3^2 = 4/9` .................[समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]
APPEARS IN
संबंधित प्रश्न
Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.
ΔABC व ΔDEF मध्ये ∠B = ∠E, ∠F = ∠C आणि AB = 3 DE, तर त्या दोन त्रिकोणांबाबत सत्य विधान कोणते?
जर ΔABC ~ ΔPQR आणि AB : PQ = 3:4, तर A(ΔABC) : A(ΔPQR) किती?
जर ΔXYZ ~ ΔPQR आणि A(ΔXYZ) = 25 चौसेमी, A(ΔPQR) = 4 चौसेमी, तर XY : PQ = ?
जर ∆ABC ~ ∆LMN आणि ∠A = 60° असल्यास ∠L = ?
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?
∆ABC ~ ∆PQR, A(∆ABC) = 80 चौ. एकक, A(∆PQR) = 125 चौ. एकक, तर खालील कृती पूर्ण करा.
`("A"(Delta"ABC"))/("A"(Delta"PQR")) = 80/125 = square/square,` म्हणून `"AB"/"PQ" = square/square`
आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा.
∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.
सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत `square` प्रमाणात असतात.
`("A"(Delta"PQS"))/("A"(Delta"QRS")) = square/"NR",`
`100/110 = square/"NR",`
NR = `square` सेमी
जर ΔABC ∼ ΔPQR आणि `("A"(Delta"ABC"))/(A(Delta"PQR")) = 16/25` तर AB : PQ किती?
जर ∆ABC ~ ∆PQR आणि AB : PQ = 2 : 3, तर `("A" (∆"ABC"))/("A"(∆"PQR"))` ची किंमत काढा.