मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी व 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल तर मोठ्या त्रिकोणाची संगत बाजू काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी व 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल तर मोठ्या त्रिकोणाची संगत बाजू काढा.

बेरीज

उत्तर

समजा दोन समरूप त्रिकोणांची क्षेत्रफळे A1 आणि A2 आहेत.

A= 225 चौसेमी, A2 = 81 चौसेमी

समजा, मोठ्या व लहान त्रिकोणांच्या संगत बाजू अनुक्रमे s1 व s2 आहेत.

s= 12 सेमी

`"A"_1/"A"_2 = ("s"_1^2)/("s"_2^2)` .......[समरूप त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर]

∴ `225/81 = ("s"_1^2)/12^2`

∴ `"s"_1^2 = (225 xx 12^2)/81`

∴ s= `(15 xx 12)/9`  ......[दोन्ही बाजूंचे वर्गमूळ घेऊन]

∴ s= 20 सेमी

∴ मोठ्या त्रिकोणाची संगत बाजू २० सेमी आहे.

shaalaa.com
समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: समरूपता - सरावसंच 1.4 [पृष्ठ २५]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
पाठ 1 समरूपता
सरावसंच 1.4 | Q 5. | पृष्ठ २५

संबंधित प्रश्‍न

ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.


Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.


ΔABC व ΔDEF हे दोन्ही समभुज त्रिकोण आहेत, A(ΔABC) : A(ΔDEF) = 1 : 2 असून AB = 4 आहे तर DE ची लांबी किती?


जर ΔABC ~ ΔPQR आणि AB : PQ = 3:4, तर A(ΔABC) : A(ΔPQR) किती?


∆ABC ~ ∆LMN आणि ∠B = 40° तर ∠M चे माप किती? कारण लिहा. 


दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?


आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा.

∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.

सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत `square` प्रमाणात असतात.

`("A"(Delta"PQS"))/("A"(Delta"QRS")) = square/"NR",`

`100/110 = square/"NR",`

NR = `square` सेमी

 


दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा. 


∆ABC मध्ये, AP लंब BC व BQ लंब AC, B-P-C, A-Q-C, तर ∆CPA ~ ∆CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 असल्यास AC ची किंमत काढा. 

∆CPA व ∆CQB मध्ये,

∠CPA ≅ `square` ...........[प्रत्येकी 90°]

∠ACP ≅ `square` ...........[सामाईक कोन]

∆CPA ~ ∆CQB ............[`square` समरूपता कसोटी]

`"AP"/"BQ" = square/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]

`7/8 = square/12`

AC × `square` = 7 × 12

AC = 10.5

 


दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×