Advertisements
Advertisements
प्रश्न
ΔABC व ΔDEF हे दोन्ही समभुज त्रिकोण आहेत, A(ΔABC) : A(ΔDEF) = 1 : 2 असून AB = 4 आहे तर DE ची लांबी किती?
पर्याय
`2sqrt(2)`
4
8
`4sqrt(2)`
उत्तर
`4sqrt(2)`
स्पष्टीकरण :
ΔABC व ΔDEF मध्ये,
∠A ≅ ∠D ............[प्रत्येक कोनाचे माप 60°]
∠B ≅ ∠E
∴ ΔABC ∼ ΔDEF ...........[समरूपतेची कोको कसोटी]
∴ `("A"(Δ"ABC"))/("A"(Δ"DEF")) = "AB"^2/"DE"^2` .......[समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]
∴ `1/2 = 4^2/"DE"^2`
∴ `"DE"^2 = 4^2 xx 2`
∴ DE = `4sqrt(2)` एकक ..........[दोन्ही बाजूंचे वर्गमूळ घेऊन]
APPEARS IN
संबंधित प्रश्न
Δ ABC ~ Δ PQR, A (Δ ABC) = 80, A(Δ PQR) = 125, तर खालील चौकटी पूर्ण करा.
`("A"(Δ "ABC"))/("A"(Δ ....)) = 80/125 = square/square`
∴ `"AB"/"PQ" = square/square`
ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी व 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल तर मोठ्या त्रिकोणाची संगत बाजू काढा.
जर ΔABC ~ ΔDEF आणि ∠A = 45°, ∠E = 35° असल्यास ∠B चे माप किती?
∆ABC ~ ∆LMN आणि ∠B = 40° तर ∠M चे माप किती? कारण लिहा.
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा.
दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.
जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.
जर ΔABC ∼ ΔPQR आणि `("A"(Delta"ABC"))/(A(Delta"PQR")) = 16/25` तर AB : PQ किती?