Advertisements
Advertisements
प्रश्न
ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.
उत्तर
9 × A(ΔPQR ) = 16 × A(ΔLMN) ........[पक्ष]
∴ `("A"("ΔLMN"))/("A"("ΔPQR")) = 9/16` ..........(i)
आता, ΔLMN ~ ΔPQR .............[पक्ष]
∴ `("A"("ΔLMN"))/("A"("ΔPQR")) = "MN"^2/"QR"^2` .......(ii) [समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]
∴ `"MN"^2/"QR"^2 = 9/16` ........[(i) व (ii) वरून]
∴ `"MN"/"QR" = 3/4` .....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ `"MN"/20 = 3/4`
∴ MN = `(20 xx 3)/4`
∴ MN = 15 एकक
संबंधित प्रश्न
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 3 : 5 आहे, तर त्यांच्या क्षेत्रफळांचे गुणोत्तर काढा.
ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.
`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`
जर ΔABC ~ ΔPQR आणि AB : PQ = 3:4, तर A(ΔABC) : A(ΔPQR) किती?
दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे 9 : 25 गुणोत्तर असेल, तर त्यांच्या संगत बाजूंचे गुणोत्तर किती?
∆ABC ~ ∆LMN आणि ∠B = 40° तर ∠M चे माप किती? कारण लिहा.
∆ABC ~ ∆PQR, A(∆ABC) = 80 चौ. एकक, A(∆PQR) = 125 चौ. एकक, तर खालील कृती पूर्ण करा.
`("A"(Delta"ABC"))/("A"(Delta"PQR")) = 80/125 = square/square,` म्हणून `"AB"/"PQ" = square/square`
आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा.
∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.
सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत `square` प्रमाणात असतात.
`("A"(Delta"PQS"))/("A"(Delta"QRS")) = square/"NR",`
`100/110 = square/"NR",`
NR = `square` सेमी
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.
ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.