Advertisements
Advertisements
प्रश्न
ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.
उत्तर
ΔABC ∼ ΔPQR ...[पक्ष]
∴ `(AB)/(PQ) = (BC)/(QR) = (AC)/(PR)` ...(i)[समरूप त्रिकोणांच्या संगत बाजू]
परंतु,, `(AB)/(PQ) = 3/2` ...(ii)[पक्ष]
∴ `(AB)/(PQ) = (BC)/(QR) = (AC)/(PR) = 3/2` ...[(i) व (ii) वरून]
∴ `5.4/(PQ) = 4.2/(QR) = 6/(PR) = 3/2`
∴ `5.4/(PQ) = 3/2`
∴ PQ = `(5.4 xx 2)/3` = 3.6 सेमी
कच्ची आकृती
कच्ची आकृती
तसेच, `4.2/(QR) = 3/2`
∴ QR = `(4.2 xx 2)/3` = 2.8 सेमी व `6/(PR) = 3/2`
∴ PR = `(6 xx 2)/3` = 4 सेमी
APPEARS IN
संबंधित प्रश्न
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 3 : 5 आहे, तर त्यांच्या क्षेत्रफळांचे गुणोत्तर काढा.
ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.
`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`
ΔABC व ΔDEF हे दोन्ही समभुज त्रिकोण आहेत, A(ΔABC) : A(ΔDEF) = 1 : 2 असून AB = 4 आहे तर DE ची लांबी किती?
जर ΔABC ~ ΔDEF आणि ∠A = 45°, ∠E = 35° असल्यास ∠B चे माप किती?
जर ∆ABC ~ ∆LMN आणि ∠A = 60° असल्यास ∠L = ?
∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?
∆ABC मध्ये, AP लंब BC व BQ लंब AC, B-P-C, A-Q-C, तर ∆CPA ~ ∆CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 असल्यास AC ची किंमत काढा.
∆CPA व ∆CQB मध्ये,
∠CPA ≅ `square` ...........[प्रत्येकी 90°]
∠ACP ≅ `square` ...........[सामाईक कोन]
∆CPA ~ ∆CQB ............[`square` समरूपता कसोटी]
`"AP"/"BQ" = square/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]
`7/8 = square/12`
AC × `square` = 7 × 12
AC = 10.5
दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.
जर ΔABC ∼ ΔPQR आणि `("A"(Delta"ABC"))/(A(Delta"PQR")) = 16/25` तर AB : PQ किती?
ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.