मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = 3 DE दाखवा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.

सिद्धांत

उत्तर

पक्ष: ΔABC मध्ये,

रेख DE || बाजू BC

2A(ΔADE) = A(⬜ DBCE)

साध्य:

  1. AB : AD
  2. BC = `sqrt3` DE

सिद्धता:

1. A(ΔABC) = A(ΔADE) + A(⬜ DBCE)

= A(ΔADE) + 2A(ΔADE)    ...(पक्ष)

2. A(ΔABC) = 3A(ΔADE)

3. `("A"(Delta "ABC"))/("A"(Delta "ADE")) = 3/1`

ΔABC व ΔADE मध्ये,

∠A ≅ ∠A      ...(सामाईक कोन)

∠ABC ≅ ∠ADE      ...[संगत कोन (DE || BC)]

4. ΔABC ∼ ΔADE     ...(को-को कसोटी)

5. `("A"(Delta "ABC"))/("A"(Delta "ADE")) = "AB"^2/"AD"^2`     ...(समरूप त्रिकोणांच्या क्षेत्रफळाचा प्रमेय)

6. `3/1 = "AB"^2/"AD"^2`

`sqrt3/1 = "AB"/"AD"`

AB : AD = `sqrt3` : 1

7. ΔABC ∼ ΔADE        ...(विधान (4) वरून)

`"AB"/"AD" = "BC"/"DE"`    ...(समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय)

`sqrt3/1 = "BC"/"DE"`     ...[(4) वरून]

∴ BC = `sqrt3` DE

shaalaa.com
समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Official

संबंधित प्रश्‍न

ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.

`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`


Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.


ΔABC व ΔDEF मध्ये ∠B = ∠E, ∠F = ∠C आणि AB = 3 DE, तर त्या दोन त्रिकोणांबाबत सत्य विधान कोणते? 

 


जर ΔABC ~ ΔDEF आणि ∠A = 45°, ∠E = 35° असल्यास ∠B चे माप किती?


दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?


∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?


दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा. 


∆ABC मध्ये, AP लंब BC व BQ लंब AC, B-P-C, A-Q-C, तर ∆CPA ~ ∆CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 असल्यास AC ची किंमत काढा. 

∆CPA व ∆CQB मध्ये,

∠CPA ≅ `square` ...........[प्रत्येकी 90°]

∠ACP ≅ `square` ...........[सामाईक कोन]

∆CPA ~ ∆CQB ............[`square` समरूपता कसोटी]

`"AP"/"BQ" = square/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]

`7/8 = square/12`

AC × `square` = 7 × 12

AC = 10.5

 


दोन समरूप त्रिकोणांपैकी लहान त्रिकोणाच्या बाजू 4 सेमी, 5 सेमी, 6 सेमी लांबीच्या आहेत आणि मोठ्या त्रिकोणाची परिमिती 90 सेमी आहे, तर मोठ्या त्रिकोणाच्या बाजू काढा.


ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×