Advertisements
Advertisements
प्रश्न
ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.
उत्तर
पक्ष: ΔABC मध्ये,
रेख DE || बाजू BC
2A(ΔADE) = A(⬜ DBCE)
साध्य:
- AB : AD
- BC = `sqrt3` DE
सिद्धता:
1. A(ΔABC) = A(ΔADE) + A(⬜ DBCE)
= A(ΔADE) + 2A(ΔADE) ...(पक्ष)
2. A(ΔABC) = 3A(ΔADE)
3. `("A"(Delta "ABC"))/("A"(Delta "ADE")) = 3/1`
ΔABC व ΔADE मध्ये,
∠A ≅ ∠A ...(सामाईक कोन)
∠ABC ≅ ∠ADE ...[संगत कोन (DE || BC)]
4. ΔABC ∼ ΔADE ...(को-को कसोटी)
5. `("A"(Delta "ABC"))/("A"(Delta "ADE")) = "AB"^2/"AD"^2` ...(समरूप त्रिकोणांच्या क्षेत्रफळाचा प्रमेय)
6. `3/1 = "AB"^2/"AD"^2`
`sqrt3/1 = "AB"/"AD"`
AB : AD = `sqrt3` : 1
7. ΔABC ∼ ΔADE ...(विधान (4) वरून)
`"AB"/"AD" = "BC"/"DE"` ...(समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय)
`sqrt3/1 = "BC"/"DE"` ...[(4) वरून]
∴ BC = `sqrt3` DE
APPEARS IN
संबंधित प्रश्न
ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.
`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`
Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.
ΔABC व ΔDEF मध्ये ∠B = ∠E, ∠F = ∠C आणि AB = 3 DE, तर त्या दोन त्रिकोणांबाबत सत्य विधान कोणते?
जर ΔABC ~ ΔDEF आणि ∠A = 45°, ∠E = 35° असल्यास ∠B चे माप किती?
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?
∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
∆ABC मध्ये, AP लंब BC व BQ लंब AC, B-P-C, A-Q-C, तर ∆CPA ~ ∆CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 असल्यास AC ची किंमत काढा.
∆CPA व ∆CQB मध्ये,
∠CPA ≅ `square` ...........[प्रत्येकी 90°]
∠ACP ≅ `square` ...........[सामाईक कोन]
∆CPA ~ ∆CQB ............[`square` समरूपता कसोटी]
`"AP"/"BQ" = square/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]
`7/8 = square/12`
AC × `square` = 7 × 12
AC = 10.5
दोन समरूप त्रिकोणांपैकी लहान त्रिकोणाच्या बाजू 4 सेमी, 5 सेमी, 6 सेमी लांबीच्या आहेत आणि मोठ्या त्रिकोणाची परिमिती 90 सेमी आहे, तर मोठ्या त्रिकोणाच्या बाजू काढा.
ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.