Advertisements
Advertisements
Question
जर ∆ABC ~ ∆PQR आणि AB : PQ = 2 : 3, तर `("A" (∆"ABC"))/("A"(∆"PQR"))` ची किंमत काढा.
Solution
∆ABC ~ ∆PQR
AB : PQ = 2 : 3
प्रमेयानुसार, जर दोन त्रिकोण समरूप असतील तर त्यांच्या क्षेत्रफळांचे गुणोत्तर हे त्यांच्या संगत भुजांच्या वर्गांच्या गुणोत्तराएवढे असते.
∴ `("A" (∆"ABC"))/("A"(∆"PQR")) = "AB"/"PQ"`
`= "AB"^2/"PQ"^2`
`= 2^2/3^2`
`= 4/9`
APPEARS IN
RELATED QUESTIONS
ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.
`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`
ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.
Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.
जर ΔABC ~ ΔPQR आणि AB : PQ = 3:4, तर A(ΔABC) : A(ΔPQR) किती?
जर ∆ABC ~ ∆LMN आणि ∠A = 60° असल्यास ∠L = ?
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?
∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
दोन समरूप त्रिकोणांपैकी लहान त्रिकोणाच्या बाजू 4 सेमी, 5 सेमी, 6 सेमी लांबीच्या आहेत आणि मोठ्या त्रिकोणाची परिमिती 90 सेमी आहे, तर मोठ्या त्रिकोणाच्या बाजू काढा.
जर ΔABC ∼ ΔPQR आणि `("A"(Delta"ABC"))/(A(Delta"PQR")) = 16/25` तर AB : PQ किती?