English

दोन समरूप त्रिकोणांपैकी लहान त्रिकोणाच्या बाजू 4 सेमी, 5 सेमी, 6 सेमी लांबीच्या आहेत आणि मोठ्या त्रिकोणाची परिमिती 90 सेमी आहे, तर मोठ्या त्रिकोणाच्या बाजू काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

Question

दोन समरूप त्रिकोणांपैकी लहान त्रिकोणाच्या बाजू 4 सेमी, 5 सेमी, 6 सेमी लांबीच्या आहेत आणि मोठ्या त्रिकोणाची परिमिती 90 सेमी आहे, तर मोठ्या त्रिकोणाच्या बाजू काढा.

Sum

Solution

पक्ष: ∆ABC ~ ∆PQR

∆ABC मध्ये, AB = 4 सेमी, BC = 5 सेमी, AC = 6 सेमी

∆PQR मध्ये, PQ + QR + PR = 90 सेमी

शोधा: PQ, QR आणि PR

उकल:

∆ABC ~ ∆PQR …[पक्ष]

∴ `"AB"/"PQ" = "BC"/"QR" = "AC"/"PR"` = …[समरूप त्रिकोणांच्या संगत बाजू]

समजा, `"AB"/"PQ" = "BC"/"QR" = "AC"/"PR"` = k

∴ `4/"pQ" = 5/"QR" = 6/"PR" = "k"`  .....[पक्ष]

∴ `4/"PQ" = "k", 5/"QR" = "k"` आणि `6/"PR" = "k"`

∴ PQ = `4/"k", "QR" = 5/"k"` आणि PR = `6/"k"` ...(i)

∴ PQ + QR + PR = `4/"k" + 5/"k" + 6/"k"`

∴ 90 = `15/"k"`  ..............[पक्ष]

∴ k = `15/90`

= `1/6`

∴ PQ = `4/((1/6))` = 4 × 6 = 24 सेमी .........[(i) वरून]

∴ QR = `5/((1/6))` = 5 × 6 = 30 सेमी .........[(i) वरून]

∴ PR = `6/((1/6))` = 6 × 6 = 36 सेमी .........[(i) वरून]

∴ मोठ्या त्रिकोणाच्या बाजू 24 सेमी, 30 सेमी आणि 36 सेमी आहेत.

shaalaa.com
समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय
  Is there an error in this question or solution?
Chapter 1: समरुपता - Q.४

APPEARS IN

RELATED QUESTIONS

Δ ABC ~ Δ PQR, A (Δ ABC) = 80, A(Δ PQR) = 125, तर खालील चौकटी पूर्ण करा.

`("A"(Δ "ABC"))/("A"(Δ ....)) = 80/125 = square/square`

∴ `"AB"/"PQ" = square/square`


Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.


ΔABC व ΔDEF मध्ये ∠B = ∠E, ∠F = ∠C आणि AB = 3 DE, तर त्या दोन त्रिकोणांबाबत सत्य विधान कोणते? 

 


जर ΔABC ~ ΔPQR आणि AB : PQ = 3:4, तर A(ΔABC) : A(ΔPQR) किती?


दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे 9 : 25 गुणोत्तर असेल, तर त्यांच्या संगत बाजूंचे गुणोत्तर किती?


आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा.

∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.

सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत `square` प्रमाणात असतात.

`("A"(Delta"PQS"))/("A"(Delta"QRS")) = square/"NR",`

`100/110 = square/"NR",`

NR = `square` सेमी

 


दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा. 


समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा. 


दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.


ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×