English

आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा. ∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे. सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत □ प्रमाणात - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

Question

आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा.

∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.

सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत `square` प्रमाणात असतात.

`("A"(Delta"PQS"))/("A"(Delta"QRS")) = square/"NR",`

`100/110 = square/"NR",`

NR = `square` सेमी

 

Sum

Solution

∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.

सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत उंचीच्या प्रमाणात असतात.

`("A"(Delta"PQS"))/("A"(Delta"QRS")) = underline("PM")/"NR",`

`100/110 = underline(10)/"NR",`

∴ NR = `(110 xx 10)/100`

∴ NR = 11 सेमी    

shaalaa.com
समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय
  Is there an error in this question or solution?
Chapter 1: समरुपता - Q.२ अ

APPEARS IN

SCERT Maharashtra Geometry (Mathematics 2) [Marathi] 10 Standard SSC
Chapter 1 समरुपता
Q.२ अ | Q ४.

RELATED QUESTIONS

ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.

`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`


ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.


Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.


ΔABC व ΔDEF मध्ये ∠B = ∠E, ∠F = ∠C आणि AB = 3 DE, तर त्या दोन त्रिकोणांबाबत सत्य विधान कोणते? 

 


∆ABC ~ ∆LMN आणि ∠B = 40° तर ∠M चे माप किती? कारण लिहा. 


∆ABC ~ ∆PQR, A(∆ABC) = 80 चौ. एकक, A(∆PQR) = 125 चौ. एकक, तर खालील कृती पूर्ण करा.

`("A"(Delta"ABC"))/("A"(Delta"PQR")) = 80/125 = square/square,` म्हणून `"AB"/"PQ" = square/square`


समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा. 


दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.


दोन समरूप त्रिकोणांपैकी लहान त्रिकोणाच्या बाजू 4 सेमी, 5 सेमी, 6 सेमी लांबीच्या आहेत आणि मोठ्या त्रिकोणाची परिमिती 90 सेमी आहे, तर मोठ्या त्रिकोणाच्या बाजू काढा.


जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×