English

□ABCD में रेख AD || रेख BC. विकर्ण AC और विकर्ण BD परस्पर एक दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि APPD=PCBP - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

Question

`square`ABCD में रेख AD || रेख BC. विकर्ण AC और विकर्ण BD परस्पर एक दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि `"AP"/"PD" = "PC"/"BP"`

 

Theorem

Solution

`square`ABCD में,

रेख AD || रेख BC तथा रेखा BD उसकी त्रियक रेखा है |

∴ ∠CAD ≅ ∠ACB ...........(एकांतर कोण)

अर्थात, ∠PAD ≅ ∠PCB ......(एक ही कोण के भिन्न नाम) ....(1)

अब, ΔPAD तथा ΔPCB में,

∠PAD ≅ ∠PCB .........[(1) से]

∠APD ≅ ∠CPB .........(शीर्षाभिमुख कोण)

∴ ΔPAD ∼ ΔPCB ................(समरूपता की को-को कसौटी)

∴ `"PA"/"PC" = "PD"/"PB"` ...........(समरूप त्रिभुजों की संगत भुजाएँ समानुपात में होती है |)

∴ `"AP"/"PC" = "PD"/"BP"`

∴ `"AP"/"PD" = "PC"/"BP"` .........(एकांतरानुपात की क्रिया से)

shaalaa.com
त्रिभुजों की समरूपता की कसौटियाँ
  Is there an error in this question or solution?
Chapter 1: समरूपता - प्रकीर्ण प्रश्नसंग्रह 1 [Page 29]

APPEARS IN

Balbharati Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
Chapter 1 समरूपता
प्रकीर्ण प्रश्नसंग्रह 1 | Q 11. | Page 29

RELATED QUESTIONS

आकृति में ∠ABC = 75°, ∠EDC = 75° तो इनमें दो त्रिभुज किस कसौटी के अनुसार समरूप हैं? उनकी समरूपता की एकैकी संगति लिखिए।

 


संलग्न आकृति में, दिए गए त्रिभुज क्या समरूप हैं? यदि हाँ तो किस कसौटी के अनुसार?

 


संलग्न आकृति में `square`PQRS एक समलंब चतुर्भुज है। जिसमें भुजा PQ || भुजा SR, AR = 5AP, AS = 5AQ तो सिद्ध कीजिए कि, SR = 5PQ


संलग्न आकृति में रेख AC तथा रेख BD परस्पर बिंदु P पर प्रतिच्छेदित करते हैं और `"AP"/"CP" = "BP"/"DP"` तो सिद्ध कीजिए कि, ΔABP ∼ ΔCDP.

 


संलग्न आकृति में ΔABC में बिंदु D यह भुजा BC पर इस प्रकार है, कि ∠BAC = ∠ADC तो सिद्ध कीजिए कि, CA2 = CB × CD.

  


समबाहु ΔABC तथा ΔDEF में A(ΔABC) : A(ΔDEF) = 1 : 2 AB = 4 तो DE की लंबाई ज्ञात कीजिए।


आकृति में रेख PQ || रेख DE यदि A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP है, तो A(`square`DPQE) ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP, माना DP = x ∴ PF = 2x

DF = DP + `square = square + square = 3x`

ΔFDE तथा ΔFPQ में।

∠FDE ≅ ∠`square` (संगत कोण)

∠FED ≅ ∠`square` (संगत कोण)

∴ ΔFDE ∼ ΔFPQ .........(को-को कसौटी)

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = (3x)^2/(2x)^2 = 9/4`

A(ΔFDE) = `9/4`A(ΔFPQ ) = `9/4 xx square = square`

A(`square`DPQE) = A(ΔFDE) - A(ΔFPQ)

= `square - square`

= `square` 


आकृति में रेख XY || भुजा AC. यदि 2AX = 3BX और XY = 9 तो AC का मान ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

कृति : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX + BX")/"BX" = (square + square)/square` ........... (योगानुपात की क्रिया से)

`"AB"/"BX" = square/square` .......... (I)

ΔBCA ~ ΔBYX .......... (समरूपता की `square` कसौटी)

∴ `"BA"/"BX" = "AC"/"XY"` .......... (समरूप त्रिभुजों की संगत भुजा)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) से

 


आकृति में `square`DEFG एक वर्ग है। ΔABC में ∠A = 90°, बिंदु F भुजा AC पर स्थित है। तो सिद्ध कीजिए कि, DE2 = BD × EC (ΔGBD तथा ΔCFE को समरूप दिखाइए और GD = FE = DE का उपयोग कीजिए।) 

 


दी गई आकृति में, रेख AC तथा रेख BD एक-दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं।

यदि `(AP)/(CP) = (BP)/(DP)` हो, तो ΔABP ∼ ΔCDP सिद्ध करने के लिए निम्न कृति पूर्ण करो:

कृति: ΔABP तथा ΔCDP में,

`(AP)/(CP) = (BP)/(DP)` ..........`square`

∠APB ≅ `square`   ...(शीर्षाभिमुख कोण)

∴ `square` ∼ ΔCDP  ... (समरूपता की `square` कसोटी)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×