मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (हिंदी माध्यम) इयत्ता १० वी

□ABCD में रेख AD || रेख BC. विकर्ण AC और विकर्ण BD परस्पर एक दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि APPD=PCBP - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

`square`ABCD में रेख AD || रेख BC. विकर्ण AC और विकर्ण BD परस्पर एक दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि `"AP"/"PD" = "PC"/"BP"`

 

सिद्धांत

उत्तर

`square`ABCD में,

रेख AD || रेख BC तथा रेखा BD उसकी त्रियक रेखा है |

∴ ∠CAD ≅ ∠ACB ...........(एकांतर कोण)

अर्थात, ∠PAD ≅ ∠PCB ......(एक ही कोण के भिन्न नाम) ....(1)

अब, ΔPAD तथा ΔPCB में,

∠PAD ≅ ∠PCB .........[(1) से]

∠APD ≅ ∠CPB .........(शीर्षाभिमुख कोण)

∴ ΔPAD ∼ ΔPCB ................(समरूपता की को-को कसौटी)

∴ `"PA"/"PC" = "PD"/"PB"` ...........(समरूप त्रिभुजों की संगत भुजाएँ समानुपात में होती है |)

∴ `"AP"/"PC" = "PD"/"BP"`

∴ `"AP"/"PD" = "PC"/"BP"` .........(एकांतरानुपात की क्रिया से)

shaalaa.com
त्रिभुजों की समरूपता की कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: समरूपता - प्रकीर्ण प्रश्नसंग्रह 1 [पृष्ठ २९]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
पाठ 1 समरूपता
प्रकीर्ण प्रश्नसंग्रह 1 | Q 11. | पृष्ठ २९

संबंधित प्रश्‍न

आकृति में ∠ABC = 75°, ∠EDC = 75° तो इनमें दो त्रिभुज किस कसौटी के अनुसार समरूप हैं? उनकी समरूपता की एकैकी संगति लिखिए।

 


संलग्न आकृति में, दिए गए त्रिभुज क्या समरूप हैं? यदि हाँ तो किस कसौटी के अनुसार?

 


ΔABC में AP ⊥ BC, BQ ⊥ AC B-P-C, A-Q-C तो सिद्ध कीजिए कि ΔCPA ~ ΔCQB। यदि AP = 7, BQ = 8, BC = 12 तो AC का मान ज्ञात कीजिए।


संलग्न आकृति में रेख AC तथा रेख BD परस्पर बिंदु P पर प्रतिच्छेदित करते हैं और `"AP"/"CP" = "BP"/"DP"` तो सिद्ध कीजिए कि, ΔABP ∼ ΔCDP.

 


संलग्न आकृति में ΔABC में बिंदु D यह भुजा BC पर इस प्रकार है, कि ∠BAC = ∠ADC तो सिद्ध कीजिए कि, CA2 = CB × CD.

  


समबाहु ΔABC तथा ΔDEF में A(ΔABC) : A(ΔDEF) = 1 : 2 AB = 4 तो DE की लंबाई ज्ञात कीजिए।


आकृति में रेख PQ || रेख DE यदि A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP है, तो A(`square`DPQE) ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP, माना DP = x ∴ PF = 2x

DF = DP + `square = square + square = 3x`

ΔFDE तथा ΔFPQ में।

∠FDE ≅ ∠`square` (संगत कोण)

∠FED ≅ ∠`square` (संगत कोण)

∴ ΔFDE ∼ ΔFPQ .........(को-को कसौटी)

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = (3x)^2/(2x)^2 = 9/4`

A(ΔFDE) = `9/4`A(ΔFPQ ) = `9/4 xx square = square`

A(`square`DPQE) = A(ΔFDE) - A(ΔFPQ)

= `square - square`

= `square` 


आकृति में रेख XY || भुजा AC. यदि 2AX = 3BX और XY = 9 तो AC का मान ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

कृति : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX + BX")/"BX" = (square + square)/square` ........... (योगानुपात की क्रिया से)

`"AB"/"BX" = square/square` .......... (I)

ΔBCA ~ ΔBYX .......... (समरूपता की `square` कसौटी)

∴ `"BA"/"BX" = "AC"/"XY"` .......... (समरूप त्रिभुजों की संगत भुजा)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) से

 


आकृति में `square`DEFG एक वर्ग है। ΔABC में ∠A = 90°, बिंदु F भुजा AC पर स्थित है। तो सिद्ध कीजिए कि, DE2 = BD × EC (ΔGBD तथा ΔCFE को समरूप दिखाइए और GD = FE = DE का उपयोग कीजिए।) 

 


□ABCD समांतर चतुर्भुज है। बिंदु P, भुजा CD का मध्यबिंदु है। रेख BP यह विकर्ण AC को बिंदु X पर प्रतिच्छेदित करती है, तो सिद्ध करो कि 3AX = 2AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×