मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (हिंदी माध्यम) इयत्ता १० वी

आकृति में □DEFG एक वर्ग है। ΔABC में ∠A = 90°, बिंदु F भुजा AC पर स्थित है। तो सिद्ध कीजिए कि, DE2 = BD × EC (ΔGBD तथा ΔCFE को समरूप दिखाइए और GD = FE = DE का उपयोग कीजिए।) - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

आकृति में `square`DEFG एक वर्ग है। ΔABC में ∠A = 90°, बिंदु F भुजा AC पर स्थित है। तो सिद्ध कीजिए कि, DE2 = BD × EC (ΔGBD तथा ΔCFE को समरूप दिखाइए और GD = FE = DE का उपयोग कीजिए।) 

 

सिद्धांत

उत्तर

`square`DEFG एक वर्ग है। ...........(दत्त)

∴ DE = EF = GF = GD ...........(वर्ग की भुजाएँ) .....(1)

∠GDE = ∠DEF = 90° ...........(वर्ग के कोण)

∴ रेख GD ⊥ भुजा BC और रेख EF ⊥ भुजा BC

ΔBAC और ΔBDG में,

∠BAC ≅ ∠BDG ..........(प्रत्येक समकोण)

∠ABC ≅ ∠DBG ........(सामान्य कोण)

∴ ΔBAC ∼ ΔBDG .........(समरूपता की को-को कसौटी) .....(2)

इसी प्रकार, ΔBAC ∼ ΔFEC .........(3)

∴ ΔBDG ∼ ΔFEC ......[(2) और (3) से]

∴ `"BD"/"EF" = "GD"/"EC"` .....(समरूप त्रिभुजों की संगत भुजाएँ)

∴ `"BD"/"DE" = "DE"/"EC"`   ...[(1) से]

∴ DE2 = BD × EC.

shaalaa.com
त्रिभुजों की समरूपता की कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: समरूपता - प्रकीर्ण प्रश्नसंग्रह 1 [पृष्ठ २९]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
पाठ 1 समरूपता
प्रकीर्ण प्रश्नसंग्रह 1 | Q 13. | पृष्ठ २९

संबंधित प्रश्‍न

आकृति में ∠ABC = 75°, ∠EDC = 75° तो इनमें दो त्रिभुज किस कसौटी के अनुसार समरूप हैं? उनकी समरूपता की एकैकी संगति लिखिए।

 


ΔABC में AP ⊥ BC, BQ ⊥ AC B-P-C, A-Q-C तो सिद्ध कीजिए कि ΔCPA ~ ΔCQB। यदि AP = 7, BQ = 8, BC = 12 तो AC का मान ज्ञात कीजिए।


समलंब चतुर्भुज ABCD में, भुजा AB || भुजा DC विकर्ण AC तथा विकर्ण BD परस्पर बिंदु O पर प्रतिच्छेदित करते हैं। यदि AB = 20, DC = 6, OB = 15 तो OD का मान ज्ञात कीजिए।


`square`ABCD एक समांतर चतुर्भुज है। भुजा BC पर E कोई एक बिंदु है ; रेखा DE रेख AB को बिंदु T पर प्रतिच्छेदित करती है । तो सिद्ध कीजिए कि DE × BE = CE × TE।

 


संलग्न आकृति में रेख AC तथा रेख BD परस्पर बिंदु P पर प्रतिच्छेदित करते हैं और `"AP"/"CP" = "BP"/"DP"` तो सिद्ध कीजिए कि, ΔABP ∼ ΔCDP.

 


संलग्न आकृति में ΔABC में बिंदु D यह भुजा BC पर इस प्रकार है, कि ∠BAC = ∠ADC तो सिद्ध कीजिए कि, CA2 = CB × CD.

  


समबाहु ΔABC तथा ΔDEF में A(ΔABC) : A(ΔDEF) = 1 : 2 AB = 4 तो DE की लंबाई ज्ञात कीजिए।


दी गई आकृति में, रेख AC तथा रेख BD एक-दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं।

यदि `(AP)/(CP) = (BP)/(DP)` हो, तो ΔABP ∼ ΔCDP सिद्ध करने के लिए निम्न कृति पूर्ण करो:

कृति: ΔABP तथा ΔCDP में,

`(AP)/(CP) = (BP)/(DP)` ..........`square`

∠APB ≅ `square`   ...(शीर्षाभिमुख कोण)

∴ `square` ∼ ΔCDP  ... (समरूपता की `square` कसोटी)


ΔABC में, रेख XY || रेख AC. यदि 2AX = 3BX तथा XY = 9 हो, तो AC का मान ज्ञात करो।


□ABCD समांतर चतुर्भुज है। बिंदु P, भुजा CD का मध्यबिंदु है। रेख BP यह विकर्ण AC को बिंदु X पर प्रतिच्छेदित करती है, तो सिद्ध करो कि 3AX = 2AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×