मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (हिंदी माध्यम) इयत्ता १० वी

समबाहु ΔABC तथा ΔDEF में A(ΔABC) : A(ΔDEF) = 1 : 2 AB = 4 तो DE की लंबाई ज्ञात कीजिए। - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

समबाहु ΔABC तथा ΔDEF में A(ΔABC) : A(ΔDEF) = 1 : 2 AB = 4 तो DE की लंबाई ज्ञात कीजिए।

बेरीज

उत्तर

ΔABC और ΔDEF समबाहु त्रिभुज है |

∴ ∠A = ∠B = ∠C = ∠D = ∠E = ∠F = 60° ..........(समबाहु त्रिभुज के कोण)

ΔABC और ΔDEF में,

`{:(∠"A" ≅ ∠"D"), (∠"B" ≅ ∠"E"):}}` .........(प्रत्येक 60°)

∴ ΔABC ∼ ΔDEF ........(समरूपता की को-को कसौटी)

समरूप त्रिभुजों के क्षेत्रफल के प्रमेय से,

`("A"(Δ"ABC"))/("A"(Δ"DEF")) = "AB"^2/"DE"^2` ....(1)

A(ΔABC) : A(ΔDEF) = 1 :  2 तथा AB = 4 ......(दिया है |) .....(2)

∴ `1/2 = 4^2/"DE"^2` .....[(1) और (2) से]

∴ `"DE"^2 = 4^2 xx 2`

∴ DE = `4sqrt2` ........(दोनों पक्षों का वर्गमूल लेने पर)

∴ DE = `underline(4sqrt2)`.

shaalaa.com
त्रिभुजों की समरूपता की कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: समरूपता - प्रश्नसंग्रह 1.4 [पृष्ठ २५]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
पाठ 1 समरूपता
प्रश्नसंग्रह 1.4 | Q 6. | पृष्ठ २५

संबंधित प्रश्‍न

संलग्न आकृति में, दिए गए त्रिभुज क्या समरूप हैं? यदि हाँ तो किस कसौटी के अनुसार?

 


संलग्न आकृति में `square`PQRS एक समलंब चतुर्भुज है। जिसमें भुजा PQ || भुजा SR, AR = 5AP, AS = 5AQ तो सिद्ध कीजिए कि, SR = 5PQ


समलंब चतुर्भुज ABCD में, भुजा AB || भुजा DC विकर्ण AC तथा विकर्ण BD परस्पर बिंदु O पर प्रतिच्छेदित करते हैं। यदि AB = 20, DC = 6, OB = 15 तो OD का मान ज्ञात कीजिए।


`square`ABCD एक समांतर चतुर्भुज है। भुजा BC पर E कोई एक बिंदु है ; रेखा DE रेख AB को बिंदु T पर प्रतिच्छेदित करती है । तो सिद्ध कीजिए कि DE × BE = CE × TE।

 


संलग्न आकृति में रेख AC तथा रेख BD परस्पर बिंदु P पर प्रतिच्छेदित करते हैं और `"AP"/"CP" = "BP"/"DP"` तो सिद्ध कीजिए कि, ΔABP ∼ ΔCDP.

 


आकृति में रेख PQ || रेख DE यदि A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP है, तो A(`square`DPQE) ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP, माना DP = x ∴ PF = 2x

DF = DP + `square = square + square = 3x`

ΔFDE तथा ΔFPQ में।

∠FDE ≅ ∠`square` (संगत कोण)

∠FED ≅ ∠`square` (संगत कोण)

∴ ΔFDE ∼ ΔFPQ .........(को-को कसौटी)

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = (3x)^2/(2x)^2 = 9/4`

A(ΔFDE) = `9/4`A(ΔFPQ ) = `9/4 xx square = square`

A(`square`DPQE) = A(ΔFDE) - A(ΔFPQ)

= `square - square`

= `square` 


`square`ABCD में रेख AD || रेख BC. विकर्ण AC और विकर्ण BD परस्पर एक दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि `"AP"/"PD" = "PC"/"BP"`

 


आकृति में रेख XY || भुजा AC. यदि 2AX = 3BX और XY = 9 तो AC का मान ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

कृति : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX + BX")/"BX" = (square + square)/square` ........... (योगानुपात की क्रिया से)

`"AB"/"BX" = square/square` .......... (I)

ΔBCA ~ ΔBYX .......... (समरूपता की `square` कसौटी)

∴ `"BA"/"BX" = "AC"/"XY"` .......... (समरूप त्रिभुजों की संगत भुजा)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) से

 


दी गई आकृति में, रेख AC तथा रेख BD एक-दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं।

यदि `(AP)/(CP) = (BP)/(DP)` हो, तो ΔABP ∼ ΔCDP सिद्ध करने के लिए निम्न कृति पूर्ण करो:

कृति: ΔABP तथा ΔCDP में,

`(AP)/(CP) = (BP)/(DP)` ..........`square`

∠APB ≅ `square`   ...(शीर्षाभिमुख कोण)

∴ `square` ∼ ΔCDP  ... (समरूपता की `square` कसोटी)


ΔABC में, रेख XY || रेख AC. यदि 2AX = 3BX तथा XY = 9 हो, तो AC का मान ज्ञात करो।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×