मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (हिंदी माध्यम) इयत्ता १० वी

संलग्न आकृति में □PQRS एक समलंब चतुर्भुज है। जिसमें भुजा PQ || भुजा SR, AR = 5AP, AS = 5AQ तो सिद्ध कीजिए कि, SR = 5PQ - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

संलग्न आकृति में `square`PQRS एक समलंब चतुर्भुज है। जिसमें भुजा PQ || भुजा SR, AR = 5AP, AS = 5AQ तो सिद्ध कीजिए कि, SR = 5PQ

सिद्धांत

उत्तर १

भुजा PQ || भुजा SR तथा रेखा QS उनकी तिर्यक रेखा है | .....(दत्त)

∴ ∠PQS ≅ ∠RSQ ...........(एकांतर कोण प्रमेय)

∴ ∠PQA ≅ ∠RSA ........(Q-A-S) ........(1)

ΔPQA और ΔRSA में,

∠PQA ≅ ∠RSA .......[(1) से]

∠PAQ ≅ ∠RAS ......(शीर्षाभिमुख कोण)

∴ ΔPQA ∼ ΔRSA ..........(समरूपता की को-को कसौटी)

∴ `"PQ"/"SR" = "AQ"/"AS" = "AP"/"AR"` ........(समरुप त्रिभुजों की संगत भुजाओं का अनुपात) ......(2)

AR = 5AP ........(दत्त) .....(3)

(3) का मान (2) में रखने पर,

`"PQ"/"SR" = "AQ"/"AS" = "AP"/(5"AP")`

∴ `"PQ"/"SR" = "AQ"/"AS" = 1/5`

∴ `"PQ"/"SR" = 1/5`

∴ SR = 5PQ.

shaalaa.com

उत्तर २

AR = 5AP ........(दत्त)

∴ `"AR"/"AP" = 5/1` ...........(1)

AS = 5AQ

∴ `"AS"/"AQ" = 5/1` ...........(2)

ΔRAS और ΔPAQ में,

`"AR"/"AP" = "AS"/"AQ"` .....[(1) और (2) से]

∠RAS ≅ ∠PAQ ........(शीर्षाभिमुख कोण)

∴  ΔRAS ∼ ΔPAQ ......(समरूपता की भु-को-भु कसौटी)

∴ `"AR"/"AP" = "SR"/"QP"`  ........(स.त्रि.स.भु)

∴ `5/1 = "SR"/"QP"` ....[(1) से]

∴ SR = 5QP

∴ SR = 5PQ.

shaalaa.com
त्रिभुजों की समरूपता की कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: समरूपता - प्रश्नसंग्रह 1.3 [पृष्ठ २२]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
पाठ 1 समरूपता
प्रश्नसंग्रह 1.3 | Q 5. | पृष्ठ २२

संबंधित प्रश्‍न

आकृति में ∠ABC = 75°, ∠EDC = 75° तो इनमें दो त्रिभुज किस कसौटी के अनुसार समरूप हैं? उनकी समरूपता की एकैकी संगति लिखिए।

 


संलग्न आकृति में, दिए गए त्रिभुज क्या समरूप हैं? यदि हाँ तो किस कसौटी के अनुसार?

 


समलंब चतुर्भुज ABCD में, भुजा AB || भुजा DC विकर्ण AC तथा विकर्ण BD परस्पर बिंदु O पर प्रतिच्छेदित करते हैं। यदि AB = 20, DC = 6, OB = 15 तो OD का मान ज्ञात कीजिए।


संलग्न आकृति में रेख AC तथा रेख BD परस्पर बिंदु P पर प्रतिच्छेदित करते हैं और `"AP"/"CP" = "BP"/"DP"` तो सिद्ध कीजिए कि, ΔABP ∼ ΔCDP.

 


संलग्न आकृति में ΔABC में बिंदु D यह भुजा BC पर इस प्रकार है, कि ∠BAC = ∠ADC तो सिद्ध कीजिए कि, CA2 = CB × CD.

  


समबाहु ΔABC तथा ΔDEF में A(ΔABC) : A(ΔDEF) = 1 : 2 AB = 4 तो DE की लंबाई ज्ञात कीजिए।


आकृति में रेख PQ || रेख DE यदि A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP है, तो A(`square`DPQE) ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP, माना DP = x ∴ PF = 2x

DF = DP + `square = square + square = 3x`

ΔFDE तथा ΔFPQ में।

∠FDE ≅ ∠`square` (संगत कोण)

∠FED ≅ ∠`square` (संगत कोण)

∴ ΔFDE ∼ ΔFPQ .........(को-को कसौटी)

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = (3x)^2/(2x)^2 = 9/4`

A(ΔFDE) = `9/4`A(ΔFPQ ) = `9/4 xx square = square`

A(`square`DPQE) = A(ΔFDE) - A(ΔFPQ)

= `square - square`

= `square` 


आकृति में रेख XY || भुजा AC. यदि 2AX = 3BX और XY = 9 तो AC का मान ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

कृति : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX + BX")/"BX" = (square + square)/square` ........... (योगानुपात की क्रिया से)

`"AB"/"BX" = square/square` .......... (I)

ΔBCA ~ ΔBYX .......... (समरूपता की `square` कसौटी)

∴ `"BA"/"BX" = "AC"/"XY"` .......... (समरूप त्रिभुजों की संगत भुजा)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) से

 


दी गई आकृति में, रेख AC तथा रेख BD एक-दूसरे को बिंदु P पर प्रतिच्छेदित करते हैं।

यदि `(AP)/(CP) = (BP)/(DP)` हो, तो ΔABP ∼ ΔCDP सिद्ध करने के लिए निम्न कृति पूर्ण करो:

कृति: ΔABP तथा ΔCDP में,

`(AP)/(CP) = (BP)/(DP)` ..........`square`

∠APB ≅ `square`   ...(शीर्षाभिमुख कोण)

∴ `square` ∼ ΔCDP  ... (समरूपता की `square` कसोटी)


□ABCD समांतर चतुर्भुज है। बिंदु P, भुजा CD का मध्यबिंदु है। रेख BP यह विकर्ण AC को बिंदु X पर प्रतिच्छेदित करती है, तो सिद्ध करो कि 3AX = 2AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×