Advertisements
Advertisements
Question
An α-particle and a proton are accelerated through the same potential difference. Find the ratio of their de Broglie wavelength.
Solution
We know that,
Charge on the proton = e
Charge on the alpha particle = 2e
Let mass of proton = m
So, mass of alpha particle = 4m
When a particle is of mass m and change q is accelerated by a potential V, then its de Broglie wavelength is given by
`λ=h/sqrt(2mqV)`
For proton:
`λ_"proton"=h/sqrt(2meV)`
For alpha particle:
`λ_"alpha particle"=h/sqrt(2×4m×2e×V)`
`⇒λ_"alpha particle"/λ_"proton"=(h/(2×4m×2e×V))/(h/(2meV))`
`⇒λ_"alpha particle"/λ_"proton"=(2meV)/(2×4m×2e×V)`
`=1/(2sqrt2)`
APPEARS IN
RELATED QUESTIONS
Calculate the de Broglie wavelength of an electron moving with - of the speed of light in vacuum (Negelct relativistic effect)
(Planck's constant: h = 6.63 x 10-34 Js, Mass of electron : m = 9.11 x 10-28 g)
Plot a graph showing variation of de Broglie wavelength λ versus `1/sqrtV` , where V is accelerating potential for two particles A and B, carrying the same charge but different masses m1, m2 (m1 > m2). Which one of the two represents a particle of smaller mass and why?
A deuteron and an alpha particle are accelerated with the same accelerating potential greater value of de-Broglie wavelength, associated it ?
An electron is accelerated from rest through a potential V. Obtain the expression for the de-Broglie wavelength associated with it ?
A proton and an electron have same kinetic. Which one has greater de-Broglie wavelength and why?
A litre of an ideal gas at 27°C is heated at constant pressure to 297°C. The approximate final volume of the gas is?
The de- Broglie wave length of an electron moving with a speed of 6.6 × 105 m/s is approximately
The kinetic energy of electron in (electron volt) moving with the velocity of 4 × 106 m/s will be
A strong argument for the particle mature of cathode ray is to
What is meant by “Dual nature of matter”?