English

Answer the following: Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Find 2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms

Sum

Solution

2 × 6 + 4 × 9 + 6 × 12 + ... upto n terms

Now, 2, 4, 6,  … are in A.P.

∴  rth term = 2 + (r – 1) (2) = 2r

6, 9, 12. … are in A.P.

∴  rth term = 6 + (r – 1) (3) = (3r + 3)

∴ 2 × 6 + 4 × 9 + 6 × 12 + … upto n terms

= `sum_("r" = 1)^"n" 2"r" xx (3"r" + 3)`

= `6sum_("r" = 1)^"n""r"^2 + 6sum_("r" = 1)^"n""r"`

= `6*("n"("n" + 1)(2"n" + 1))/6 + 6("n"("n" + 1))/2`

= 2(n + 1) [2n + 1 + 3]

= 2n(n + 1)(n + 2)

shaalaa.com
Arithmetico Geometric Series
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Miscellaneous Exercise 2.2 [Page 41]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (14) | Page 41

RELATED QUESTIONS

Find the sum to n terms 8 + 88 + 888 + 8888 + ...


Find the sum to n terms 0.4 + 0.44 + 0.444 + ...


Find Sn of the following arithmetico - geometric sequence:

3, 12, 36, 96, 240, …


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, 2/4, 3/16, 4/64, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`3, 6/5, 9/25, 12/125, 15/625, ...`


Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`


Find `sum_("r" = 1)^"n"((1 + 2 + 3  .... +  "r")/"r")`


Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... +  "r"^3)/("r"("r" + 1))]`


Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms


Find the sum 22 + 42 + 62 + 82 + ... upto n terms


Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)


Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)


If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ...  "upto n terms")/(1 + 2 + 3 + 4 + ...  "upto n terms") = 100/3,` find n


Answer the following:

Find 2 + 22 + 222 + 2222 + ... upto n terms


Answer the following:

Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`


Answer the following:

Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms


Answer the following:

Find 122 + 132 + 142 + 152 + ... 202 


Answer the following:

If `(1 + 2 + 3 + 4 + 5 + ...  "upto n terms")/(1 xx 2 + 2 xx3 + 3 xx 4 + 4 xx5 + ...  "upto n terms") = 3/22` Find the value of n 


Answer the following:

Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)


Answer the following:

If  `(1 xx 3 + 2 xx 5 + 3 xx 7 + ...  "upto n terms")/(1^3 + 2^3 + 3^3 + ...  "upto n terms") = 5/9`, find the value of n


Answer the following:

If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.


The sum of n terms of the series 22 + 42 + 62 + ........ is ______.


`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×