English

Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)

Sum

Solution

Let S = (702 – 692) + (682 – 672) + ... + (22 – 12)

∴ S = (22 – 12) + (42 – 32) + … + (702 – 692)

Here, 2, 4, 6, …, 70 is an A.P. with rth term = 2r

and 1, 3, 5, …, 69 in A.P. with rth term = 2r – 1

∴ S = `sum_("r" = 1)^35[(2"r")^2 - (2"r" - 1)^2]`

= `sum_("r" = 1)^35[4"r"^2 - (4"r"^2 - 4"r" + 1)]`

= `sum_("r" = 1)^35(4"r" - 1)`

= `4sum_("r" = 1)^35"r" - sum_("r" = 1)^35 1`

= `4.(35 xx 36)/2 - 35`

= (72 – 1) (35)

= 71 × 35

= 2485

shaalaa.com
Arithmetico Geometric Series
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.6 [Page 40]

RELATED QUESTIONS

Find the sum to n terms 8 + 88 + 888 + 8888 + ...


Find the sum to n terms 0.7 + 0.77 + 0.777 + ...


Find Sn of the following arithmetico - geometric sequence: 

2, 4x, 6x2, 8x3, 10x4, …


Find Sn of the following arithmetico - geometric sequence: 

1, 4x, 7x2, 10x3, 13x4, …


Find Sn of the following arithmetico - geometric sequence:

1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, 2/4, 3/16, 4/64, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, -4/3, 7/9, -10/27 ...`


Find the sum `sum_("r" = 1)^"n" ("r" + 1)(2"r" - 1)`


Find `sum_("r" = 1)^"n"((1 + 2 + 3  .... +  "r")/"r")`


Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms


Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)


If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ...  "upto n terms")/(1 + 2 + 3 + 4 + ...  "upto n terms") = 100/3,` find n


Answer the following:

Find 2 + 22 + 222 + 2222 + ... upto n terms


Answer the following:

Find `sum_("r" = 1)^"n" (5"r"^2 + 4"r" - 3)`


Answer the following:

Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`


Answer the following:

Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms


Answer the following:

Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms


Answer the following:

Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)


Answer the following:

If  `(1 xx 3 + 2 xx 5 + 3 xx 7 + ...  "upto n terms")/(1^3 + 2^3 + 3^3 + ...  "upto n terms") = 5/9`, find the value of n


Answer the following:

If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.


The sum of n terms of the series 22 + 42 + 62 + ........ is ______.


`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×