English

Find the sum to n terms 0.7 + 0.77 + 0.777 + ... - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the sum to n terms 0.7 + 0.77 + 0.777 + ...

Sum

Solution

Sn = 0.7 + 0.77 + 0.777 + … upto n terms

= 7(0.1 + 0.11 + 0.111 + …. upto n terms)

= `7/9` (0.9 + 0.99 + 0.999 + ... upto n terms)

= `7/9` [(1 − 0.1) + (1 − 0.01) + (1 − 0.001) ... upto n terms]

= `7/9` [(1 + 1 + 1 ... n times) − (0.1 + 0.01 + 0.001 + ... upto n terms)]

But 0.1, 0.01, 0.001, … n terms are in G.P.

with a = 0.1, r = `0.01/0.1` = 0.1

∴ Sn = `7/9{"n" - 0.1[(1 - 0.1)^"n"/(1 - 0.1)]}`

∴ Sn = `7/9 {"n" - 0.1/0.9 [1 - (0.1)^"n"]}`

∴ Sn = `7/9 ["n" - 1/9 [1 - (0.1)^"n"]]`

∴ Sn = `7/81 {9"n" - (1 - 1/10^"n")}`

shaalaa.com
Arithmetico Geometric Series
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.2 [Page 31]

APPEARS IN

RELATED QUESTIONS

Find the sum to n terms 3 + 33 + 333 + 3333 + …


Find the sum to n terms 8 + 88 + 888 + 8888 + ...


Find Sn of the following arithmetico - geometric sequence: 

2, 4x, 6x2, 8x3, 10x4, …


Find Sn of the following arithmetico - geometric sequence:

1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, 2/4, 3/16, 4/64, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`3, 6/5, 9/25, 12/125, 15/625, ...`


Find the sum to infinity of the following arithmetico - geometric sequence:

`1, -4/3, 7/9, -10/27 ...`


Find `sum_("r" = 1)^"n"(3"r"^2 - 2"r" + 1)`


Find `sum_("r" = 1)^"n"((1 + 2 + 3  .... +  "r")/"r")`


Find `sum_("r" = 1)^"n" [(1^3 + 2^3 + .... +  "r"^3)/("r"("r" + 1))]`


Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms


Find (702 – 692) + (682 – 672) + (662 – 652) + ... + (22 – 12)


Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + ... + (2n – 1) (2n + 1) (2n + 3)


If `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ...  "upto n terms")/(1 + 2 + 3 + 4 + ...  "upto n terms") = 100/3,` find n


If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively then show that - 9S22 = S3 (1 + 8 S1


Answer the following:

Find `sum_("r" = 1)^"n" "r"("r" - 3)("r" - 2)`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^2 + 2^2 + 3^2 + ... + "r"^2)/(2"r" + 1))`


Answer the following:

Find `sum_("r" = 1)^"n" ((1^3 + 2^3 + 3^3 + ... "r"^3)/("r" + 1)^2)`


Answer the following:

Find 2 × 5 × 8 + 4 × 7 × 10 + 6 × 9 × 12 + ... upto n terms


Answer the following:

Find `1^2/1 + (1^2 + 2^2)/2 + (1^2 + 2^2 + 3^2)/3 + ...` upto n terms


Answer the following:

Find 122 + 132 + 142 + 152 + ... 202 


Answer the following:

Find (502 – 492) + (482 – 472) + (462 – 452) + ... + (22 – 12)


Answer the following:

If  `(1 xx 3 + 2 xx 5 + 3 xx 7 + ...  "upto n terms")/(1^3 + 2^3 + 3^3 + ...  "upto n terms") = 5/9`, find the value of n


Answer the following:

If p, q, r are in G.P. and `"p"^(1/x) = "q"^(1/y) = "r"^(1/z)`, verify whether x, y, z are in A.P. or G.P. or neither.


The sum of n terms of the series 22 + 42 + 62 + ........ is ______.


`(x + 1/x)^2 + (x^2 + 1/x^2)^2 + (x^3 + 1/x^3)^2` ....upto n terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×