English

Find the sum to n terms of the sequence. 0.5, 0.05, 0.005, ... - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...

Sum

Solution

Here, t1 = 0.5, t2 = 0.05, t3 = 0.005

∴ `"t"_2/"t"_1 = 0.05/0.5` = 0.1 and `"t"_3/"t"_2 = 0.005/0.05` = 0.1

∴ The given sequence is a G.P.

∴ a = 0.5 and r = 0.1

∴ Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1

= `(0.5[1 - (0.1)^"n"])/(1 - 0.1)`

= `0.5/0.9 [1 - (0.1)^"n"]`

= `5/9[1 - (1/10)^"n"]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.2 [Page 31]

APPEARS IN

RELATED QUESTIONS

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Given a G.P. with a = 729 and 7th term 64, determine S7.


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


Write the product of n geometric means between two numbers a and b

 


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


For the G.P. if a = `7/243`, r = 3 find t6.


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×