Advertisements
Advertisements
Question
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Solution
The given G.P. is `5/2, 5/4, 5/8, ....`
Here, a = First term = `5/2`
r = Common ratio = `4/5 = 1/2`
a20 = `ar^(20 - 1) = 5/2(1/2)^19` = `5/((2)(2)^19)` = `5/(2)^20`
an = `ar^(n - 1) = 5/2(1/2)^(n - 1)` = `5/((2)(2)^(n - 1))` = `5/(2)^n`
20th term = `5/2^20`
APPEARS IN
RELATED QUESTIONS
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find the 4th term from the end of the G.P.
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Express the recurring decimal 0.125125125 ... as a rational number.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
The two geometric means between the numbers 1 and 64 are
For the G.P. if a = `2/3`, t6 = 162, find r.
Which term of the G.P. 5, 25, 125, 625, … is 510?
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
The third term of a G.P. is 4, the product of the first five terms is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.