English

The Sum of First Two Terms of an Infinite G.P. is 5 and Each Term is Three Times the Sum of the Succeeding Terms. Find the G.P. - Mathematics

Advertisements
Advertisements

Question

The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.

Solution

Let the first term be a and the common difference be r.

\[\therefore a_1 + a_2 = 5 \]

\[ \Rightarrow a + ar = 5 . . . \left( i \right)\]

\[\text { Also, } a_n = 3\left[ a_{n + 1} + a_{n + 2} + a_{n + 3} + . . . \infty \right] \forall n \in N\]

\[ \Rightarrow a r^{n - 1} = 3 \left[ a r^{n + 1} + a r^{n + 2} + a r^{n + 3} + . . . \infty \right]\]

\[ \Rightarrow a r^{n - 1} = \frac{3a r^n}{1 - r} \]

\[ \Rightarrow 1 - r = 3r\]

\[ \Rightarrow 4r = 1 \]

\[ \Rightarrow r = \frac{1}{4}\]

\[\text { Putting } r = \frac{1}{4} \text { in } \left( i \right): \]

\[a + \frac{a}{4} = 5\]

\[ \Rightarrow 5a = 20 \]

\[ \Rightarrow a = 4\]

\[\text { Thus, the G . P . is } 4, 1, \frac{1}{4}, \frac{1}{16}, . . . \infty . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.4 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.4 | Q 11 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


The two geometric means between the numbers 1 and 64 are 


For the G.P. if a = `2/3`, t6 = 162, find r.


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The sum or difference of two G.P.s, is again a G.P.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×