Advertisements
Advertisements
Question
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
Solution
\[\text { Let us take a G . P . with terms }a_1 , a_2 , a_3 , a_4 , . . . \infty\text { and common ratio r }\left( \left| r \right| < 1 \right) . \]
\[\text { Also, let us take the sum of all the terms following each term to be } S_1 , S_2 , S_3 , S_4 , . . . \]
\[\text { Now }, S_1 = \frac{a_2}{\left( 1 - r \right)} = \frac{ar}{\left( 1 - r \right)}, \]
\[ S_2 = \frac{a_3}{\left( 1 - r \right)} = \frac{a r^2}{\left( 1 - r \right)}, \]
\[ S_3 = \frac{a_4}{\left( 1 - r \right)} = \frac{a r^3}{\left( 1 - r \right)}, \]
\[ \Rightarrow \frac{a_1}{S_1} = \frac{a}{\frac{ar}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]
\[\frac{a_2}{S_2} = \frac{ar}{\frac{a r^2}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]
\[\frac{a_3}{S_3} = \frac{a r^2}{\frac{a r^3}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]
\[\text { It is clearly seen that the ratio of each term to the sum of all the terms following it is constant . } \]
APPEARS IN
RELATED QUESTIONS
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. if S5 = 1023 , r = 4, Find a
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.