Advertisements
Advertisements
Question
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Solution
Let the required numbers be a and b and A, G, H be their A.M., G.M., H.M. respectively.
Then A = `("a" + "b")/2`, G = `sqrt("ab")` and H = `(2"ab")/("a" + "b")`
Now, A – G = 2 ...(1)
and A – H = `18/5` ...(2)
Subtracting (2) from (1), we get,
– G + H = `-8/5`
∴ H = `"G" - 8/5`
From (1), A = G + 2
∵ G2 = A.H.
∴ G2 = `("G" + 2)("G" - 8/5)`
= `"G"^2 + 2/5"G" - 16/5`
∴ 0 = `2/5"G" - 16/5`
∴ G = 8
∴ A = G + 2 gives A = 10
∴ `sqrt("ab")` = 8 and `("a" + "b")/2` = 10
∴ ab = 64, i.e., b = `64/"a"`
and a + b = 20
∴ `"a" + 64/"a"` = 20
∴ a2 + 64 = 20a
∴ a2 – 20a + 64 = 0
∴ (a – 16)(a – 4) = 0
∴ a – 16 = 0 or a – 4 = 0
∴ a = 16 or a = 4
When a = 16, a + b = 20 gives b = 4
When a = 4, a + b = 20 gives b = 16
Hence, the required numbers are 4 and 16.
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For a G.P. if S5 = 1023 , r = 4, Find a
Express the following recurring decimal as a rational number:
`0.bar(7)`
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0