English

Answer the following: If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0

Sum

Solution

a, b, c are in G.P.

∴ b2 = ac

ax2 + 2bx + c = 0 becomes

`"a"x^2 + 2sqrt("ac")x + "c"` = 0

`(sqrt("a")x + sqrt("c"))^2` = 0

∴ x = `(-sqrt("c"))/sqrt("a")`

∴ ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have a common root, x = `(-sqrt("c"))/sqrt("a")` Satisfying px2 + 2qx + r = 0

∴ `"p"."c"/"a" + 2"q".((-sqrt("c"))/sqrt("a")) + r` = 0

`"pc" - 2"q"sqrt("ac") + "ra"` = 0

`"p"."b"^2/"a" - 2"qb" + "ra"` = 0  ...`[because "b"^2 = "ac", "c" = "b"^2/"a", sqrt("c") = "b"/sqrt("a"), sqrt("ac") = "b"]`

∴ pb2 – 2qba + ra2 = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Miscellaneous Exercise 2.2 [Page 42]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (29) | Page 42

RELATED QUESTIONS

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


The two geometric means between the numbers 1 and 64 are 


For the G.P. if a = `7/243`, r = 3 find t6.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The third term of G.P. is 4. The product of its first 5 terms is ______.


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


The sum or difference of two G.P.s, is again a G.P.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×