Advertisements
Advertisements
Question
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
Solution
a, b and c are in G.P.
\[\therefore b^2 = ac\] .......(1)
\[\text { LHS } = a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right)\]
\[ = \frac{b^2 c^2}{a} + \frac{a^2 c^2}{b} + \frac{a^2 b^2}{c}\]
\[ = \frac{\left( ac \right) c^2}{a} + \frac{\left( b^2 \right)^2}{b} + \frac{a^2 \left( ac \right)}{c} \left[ \text { Using } (1) \right]\]
\[ = a^3 + b^3 + c^3 = \text { RHS }\]
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
For the following G.P.s, find Sn
3, 6, 12, 24, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.