Advertisements
Advertisements
Question
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
Solution
a, b and c are in G.P.
\[\therefore b^2 = ac\] .......(1)
\[\text { LHS }= \frac{\left( a + b + c \right)^2}{a^2 + b^2 + c^2}\]
\[ = \frac{\left( a + b + c \right)^2}{a^2 - b^2 + c^2 + 2 b^2}\]
\[ = \frac{\left( a + b + c \right)^2}{a^2 - b^2 + c^2 + 2ac} \left[ \text { Using } (1) \right]\]
\[ = \frac{\left( a + b + c \right)^2}{\left( a + b + c \right)\left( a - b + c \right)} \left[ \because \left( a + b + c \right)\left( a - b + c \right) = a^2 - b^2 + c^2 + 2ac \right]\]
\[ = \frac{\left( a + b + c \right)}{\left( a - b + c \right)} =\text { RHS }\]
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
For the G.P. if r = − 3 and t6 = 1701, find a.
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For a G.P. If t3 = 20 , t6 = 160 , find S7
For a G.P. If t4 = 16, t9 = 512, find S10
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.