Advertisements
Advertisements
Question
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
Solution
Let the four numbers in G.P. be `"a"/"r"^3, "a"/"r", "ar", "ar"^3`
Since their product is 1, `"a"/"r"^3*"a"/"r"*"ar"*"ar"^3` = 1
∴ a4 = 1
∴ a = 1
Also the sum of middle two numbers is `10/3`
∴ `"a"/"r" + "ar" = 10/3`
∴ `"a"(1/"r" + "r") = 10/3`
∴ `1/"r" + "r" = 10/3` as a = 1
∴ `(1 + "r"^2)/"r" = 10/3`
∴ 3 + 3r2 = 10r
∴ 3r2 – 10r + 3 = 0
∴ (r – 3)(3r – 1) = 0
∴ r = 3 or r = `1/3`
Taking r = 3, `"a"/"r"^3 = 1/27, "a"/"r" = 1/3`, ar3 = 27 and the four numbers are `1/27, 1/3, 3, 27`.
Taking r = `1/3`, `"a"/"r"^3 = 1/((1/27))` = 27, `"a"/"r" = 1/((1/3))` = 3, `"ar" = 1/3`, ar3 = `1/27` and the our numbers are 27, 3, `1/3`, `1/27`.
Hence, the required numbers in G.P. are `1/27, 1/3, 3, 27` or `27, 3, 1/3, 1/27`.
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the rational number whose decimal expansion is \[0 . 423\].
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
The numbers 3, x, and x + 6 form are in G.P. Find nth term
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Express the following recurring decimal as a rational number:
`2.bar(4)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.