Advertisements
Advertisements
Question
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Solution
Here, a = a2 − b2 and r = \[\frac{1}{a + b}\]
\[\therefore S_n = a\left( \frac{1 - r^n}{1 - r} \right) \]
\[ = \left( a^2 - b^2 \right) \left( \frac{1 - \left( \frac{1}{a + b} \right)^n}{1 - \left( \frac{1}{a + b} \right)} \right) \]
\[ = \left( a^2 - b^2 \right)\left( \frac{\left( \frac{\left( a + b \right)^n - 1}{\left( a + b \right)^n} \right)}{\frac{\left( a + b \right) - 1}{a + b}} \right)\]
\[ \Rightarrow S_n = \frac{\left( a + b \right)\left( a - b \right)}{\left( a + b \right)^{n - 1}}\left( \frac{\left( a + b \right)^n - 1}{\left( a + b \right) - 1} \right)\]
\[ = \frac{\left( a - b \right)}{\left( a + b \right)^{n - 2}}\left( \frac{\left( a + b \right)^n - 1}{\left( a + b \right) - 1} \right)\]
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Express the recurring decimal 0.125125125 ... as a rational number.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c are in G.P., then prove that:
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
Find the geometric means of the following pairs of number:
2 and 8
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
Which term of the G.P. 5, 25, 125, 625, … is 510?
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The numbers x − 6, 2x and x2 are in G.P. Find nth term
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
The sum or difference of two G.P.s, is again a G.P.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.