Advertisements
Advertisements
Question
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Solution
tn = `(5^("n"-3))/(2^("n"-3)) = (5/2)^("n"-3)`
∴ tn+1 = `(5/2)^("n"+1-3) = (5/2)^("n"-2)`
∴ `("t"_("n"+1))/"t"_"n" = ((5/2)^("n"-2))/((5/2)^("n"-3))`
= `(5/2)^("n" - 2 - "n" + 3)`
= `5/2`, which is a constant
∴ the sequence is a G.P. whose common ratio is `5/2`.
Now, tn = `(5/2)^("n" - 3)`
∴ the first term = t1 = `(5/2)^(1 - 3)`
= `(5/2)^(-2)`
= `(2/5)^2`
= `4/25`
Hence, the first term = t1 = `4/25`
and the common ratio = r = `5/2`.
APPEARS IN
RELATED QUESTIONS
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
For a G.P. a = 2, r = `-2/3`, find S6
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`