Advertisements
Advertisements
प्रश्न
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
उत्तर
tn = `(5^("n"-3))/(2^("n"-3)) = (5/2)^("n"-3)`
∴ tn+1 = `(5/2)^("n"+1-3) = (5/2)^("n"-2)`
∴ `("t"_("n"+1))/"t"_"n" = ((5/2)^("n"-2))/((5/2)^("n"-3))`
= `(5/2)^("n" - 2 - "n" + 3)`
= `5/2`, which is a constant
∴ the sequence is a G.P. whose common ratio is `5/2`.
Now, tn = `(5/2)^("n" - 3)`
∴ the first term = t1 = `(5/2)^(1 - 3)`
= `(5/2)^(-2)`
= `(2/5)^2`
= `4/25`
Hence, the first term = t1 = `4/25`
and the common ratio = r = `5/2`.
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
The fractional value of 2.357 is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
For the G.P. if r = `1/3`, a = 9 find t7
For the G.P. if a = `7/243`, r = 3 find t6.
For the G.P. if r = − 3 and t6 = 1701, find a.
Which term of the G.P. 5, 25, 125, 625, … is 510?
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For a G.P. if S5 = 1023 , r = 4, Find a
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.