Advertisements
Advertisements
प्रश्न
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
उत्तर
Since a, b, c, d are in G.P.
Again A.M. > G.M. for the first three terms
`(a + c)/2 > b` .....`("Since" sqrt(ac) = b)`
⇒ a + c > 2b ....(3)
Similarly, for the last three terms
`(b + d)/2 > c` .....`("Since" sqrt(bd) = c)`
⇒ b + d > 2c ....(4)
Adding (3) and (4), we get
(a + c) + (b + d) > 2b + 2c
a + d > b + c
APPEARS IN
संबंधित प्रश्न
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
Which term of the G.P. 5, 25, 125, 625, … is 510?
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Express the following recurring decimal as a rational number:
`0.bar(7)`
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`