Advertisements
Advertisements
प्रश्न
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
उत्तर
Here, a = 3
Common ratio,
\[r = \frac{1}{2}\]
Sn = \[\frac{3069}{512}\]
\[\therefore S_n = 3\left\{ \frac{1 - \left( \frac{1}{2} \right)^n}{1 - \frac{1}{2}} \right\}\]
\[ \Rightarrow \frac{3069}{512} = 3\left\{ \frac{1 - \frac{1}{2^n}}{\frac{1}{2}} \right\} \]
\[ \Rightarrow \frac{3069}{512} = 6 \left\{ 1 - \frac{1}{2^n} \right\}\]
\[ \Rightarrow \frac{3069}{3072} = 1 - \frac{1}{2^n} \]
\[ \Rightarrow \frac{1}{2^n} = 1 - \frac{3069}{3072} \]
\[ \Rightarrow \frac{1}{2^n} = \frac{3}{3072}\]
\[ \Rightarrow 2^n = \frac{3072}{3}\]
\[ \Rightarrow 2^n = 1024 \]
\[ \Rightarrow 2^n = 2^{10} \]
\[ \therefore n = 10\]
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Given a G.P. with a = 729 and 7th term 64, determine S7.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
Write the product of n geometric means between two numbers a and b.
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
For a G.P. If t3 = 20 , t6 = 160 , find S7
For a G.P. If t4 = 16, t9 = 512, find S10
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Express the following recurring decimal as a rational number:
`2.bar(4)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2