Advertisements
Advertisements
प्रश्न
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
उत्तर
Given, `S_∞ = 2/5 + 3/5^2 +2/5^3 + 3/5^4 + ...`
`S_∞ = (2/5 + 2/5^3 + ...∞) + (3/5^2 + 3/5^4 + ...∞)`
S∞ = S'∞ + S''∞
r' = `(2/5^3)/(2/5) = 1/5^2`
r'' = `(3/5^4)/(3/5^2) = 1/5^2`
`S_∞ = a/(1 - r) ...|r| < 1`
S∞ = `(2/5)/(1 - 1/5^2) + (3/5^2)/(1 - 1/5^2)`
S∞ = `(2/5)/(1 - 1/25) + (3/25)/(1 - 1/25)`
S∞ = `(2/5)/((25 - 1)/25) + (3/25)/((25 - 1)/25)`
S∞ = `(2/5)/(24/25) + (3/25)/(24/25)`
S∞ = `(2 × 25)/(5 × 24) + (3 × 25)/(25 × 24)`
S∞ = `(10)/(24) + (3)/(24)`
S∞ = `13/24`
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
For the G.P. if a = `7/243`, r = 3 find t6.
The numbers 3, x, and x + 6 form are in G.P. Find x
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.