Advertisements
Advertisements
प्रश्न
For the G.P. if a = `7/243`, r = 3 find t6.
उत्तर
Given, a = `7/243`, r = 3
tn = arn–1
∴ t6 = `7/243 xx (3)^(6 - 1)`
= `7/243 xx 3^5`
= 7
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Write the product of n geometric means between two numbers a and b.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
Which term of the G.P. 5, 25, 125, 625, … is 510?
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.