हिंदी

Three Numbers Are in A.P. and Their Sum is 15. If 1, 3, 9 Be Added to Them Respectively, They Form a G.P. Find the Numbers. - Mathematics

Advertisements
Advertisements

प्रश्न

Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.

उत्तर

Let the first term of an A.P. be a and its common difference be d.

\[a_1 + a_2 + a_3 = 15\]

\[ \Rightarrow a + \left( a + d \right) + \left( a + 2d \right) = 15\]

\[ \Rightarrow 3a + 3d = 15 \]

\[ \Rightarrow a + d = 5 . . . . . . . (i)\]

\[\text { Now, according to the question }: \]

\[a + 1, a + d + 3 \text { and  }a + 2d + 9 \text { are in G . P }  . \]

\[ \Rightarrow \left( a + d + 3 \right)^2 = \left( a + 1 \right)\left( a + 2d + 9 \right)\]

\[ \Rightarrow \left( 5 - d + d + 3 \right)^2 = \left( 5 - d + 1 \right) \left( 5 - d + 2d + 9 \right) \left[ \text { From } (i) \right] \]

\[ \Rightarrow \left( 8 \right)^2 = \left( 6 - d \right)\left( 14 + d \right)\]

\[ \Rightarrow 64 = 84 + 6d - 14d - d^2 \]

\[ \Rightarrow d^2 + 8d - 20 = 0\]

\[ \Rightarrow \left( d - 2 \right)\left( d + 10 \right) = 0\]

\[ \Rightarrow d = 2, - 10\]

\[\text { Now, putting } d = 2, - 10 \text { in equation (i), we get, a } = 3, 15,\text {  respectively } . \]

\[\text { Thus, for } a = 3 \text { and  }d = 2, \text { the A . P . is } 3, 5, 7 . \]

\[\text { And, for a = 15 and d = - 10, the A . P . is }15 , 5, - 5 . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 4 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Find the geometric means of the following pairs of number:

2 and 8


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For the G.P. if r = `1/3`, a = 9 find t7


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×