Advertisements
Advertisements
प्रश्न
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
विकल्प
(a) \[- \frac{4}{5}\]
(b) \[\frac{1}{5}\]
(b) \[\frac{1}{5}\]
(c) 4
(d) none of these
उत्तर
(c) 4
\[\text{ Let there be 2n terms in a G . P }. \]
\[\text{ Let a be the first term and r be the common ratio } . \]
\[ \because S_{2n} = 5\left( S_{\text{ odd terms }} \right)\]
\[ \Rightarrow \frac{a\left( r^{2n} - 1 \right)}{\left( r - 1 \right)} = 5\left( a + a r^2 + a r^4 + a r^6 + . . . a r^\left( 2n - 1 \right) \right)\]
\[ \Rightarrow \frac{a\left( r^{2n} - 1 \right)}{\left( r - 1 \right)} = 5\left( \frac{a\left( \left( r^2 \right)^n - 1 \right)}{\left( r^2 - 1 \right)} \right)\]
\[ \Rightarrow \frac{\left( r^{2n} - 1 \right)}{\left( r - 1 \right)} = 5\frac{\left( \left( r^2 \right)^n - 1 \right)}{\left( r^2 - 1 \right)}\]
\[ \Rightarrow \frac{\left( \left( r^n \right)^2 - 1^2 \right)}{\left( r - 1 \right)} = 5\frac{\left( \left( r^n \right)^2 - 1^2 \right)}{\left( r^2 - 1 \right)}\]
\[ \Rightarrow \frac{\left( r^n - 1 \right)\left( r^n + 1 \right)}{\left( r - 1 \right)} = 5\frac{\left( r^n - 1 \right)\left( r^n + 1 \right)}{\left( r - 1 \right)\left( r + 1 \right)}\]
\[ \Rightarrow \left( r^n - 1 \right)\left( r^n + 1 \right)\left( r - 1 \right)\left( r + 1 \right) - 5\left( r - 1 \right)\left( r^n - 1 \right)\left( r^n + 1 \right) = 0\]
\[ \Rightarrow \left( r^n - 1 \right)\left( r^n + 1 \right)\left( r - 1 \right)\left( r + 1 - 5 \right) = 0\]
\[\text{ But, r = 1 or - 1 is not possible }. \]
\[ \therefore r = 4\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are in G.P., then prove that:
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Which term of the G.P. 5, 25, 125, 625, … is 510?
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.