हिंदी

If A, B, C Are in G.P., Prove That: (A + 2b + 2c) (A − 2b + 2c) = A2 + 4c2. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.

उत्तर

a, b and c are in G.P.

\[\therefore b^2 = ac\]   .......(1)

\[\text { LHS }= \left( a + 2b + 2c \right)\left( a - 2b + 2c \right)\]

\[ = a^2 - 4 b^2 + 4 c^2 + 4ac\]

\[ = a^2 - 4ac + 4 c^2 + 4ac \left[ \text { Using }(1) \right]\]

\[ = a^2 + 4 c^2 = \text { RHS }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 8.5 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Evaluate `sum_(k=1)^11 (2+3^k )`


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


Find the geometric means of the following pairs of number:

2 and 8


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. if S5 = 1023 , r = 4, Find a


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


The third term of G.P. is 4. The product of its first 5 terms is ______.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×