हिंदी

If A, B, C Are in G.P., Prove That: 1 a 2 − B 2 + 1 B 2 = 1 B 2 − C 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]

उत्तर

a, b and c are in G.P.

\[\therefore b^2 = ac\]   .......(1)

\[\text {  LHS } = \frac{1}{a^2 - b^2} + \frac{1}{b^2}\]

\[ = \frac{b^2 + a^2 - b^2}{\left( a^2 - b^2 \right) b^2}\]

\[ = \frac{a^2}{\left( a^2 b^2 - b^4 \right)}\]

\[ = \frac{a^2}{a^2 \left( ac \right) - \left( ac \right)^2}\]

\[ = \frac{1}{ac - c^2}\]

\[ = \frac{1}{b^2 - c^2} = \text { RHS }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 8.4 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


For the G.P. if a = `7/243`, r = 3 find t6.


For the G.P. if a = `2/3`, t6 = 162, find r.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×