Advertisements
Advertisements
प्रश्न
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
उत्तर
a, b and c are in G.P.
\[\therefore b^2 = ac\] .......(1)
\[\text { LHS }= \frac{\left( a + b + c \right)^2}{a^2 + b^2 + c^2}\]
\[ = \frac{\left( a + b + c \right)^2}{a^2 - b^2 + c^2 + 2 b^2}\]
\[ = \frac{\left( a + b + c \right)^2}{a^2 - b^2 + c^2 + 2ac} \left[ \text { Using } (1) \right]\]
\[ = \frac{\left( a + b + c \right)^2}{\left( a + b + c \right)\left( a - b + c \right)} \left[ \because \left( a + b + c \right)\left( a - b + c \right) = a^2 - b^2 + c^2 + 2ac \right]\]
\[ = \frac{\left( a + b + c \right)}{\left( a - b + c \right)} =\text { RHS }\]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
For the G.P. if a = `2/3`, t6 = 162, find r.
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.