Advertisements
Advertisements
प्रश्न
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
उत्तर
\[S_n = \sum^n_{k = 1} \left( 2^k + 3^{k - 1} \right)\]
\[ = \sum^n_{k = 1} 2^k + \sum^n_{k = 1} 3^{k - 1} \]
\[ = \left( 2 + 4 + 8 + . . . + 2^n \right) + \left( 1 + 3 + 9 + . . . + 3^n \right) \]
\[ = 2\left( \frac{2^n - 1}{2 - 1} \right) + 1\left( \frac{3^n - 1}{3 - 1} \right) \]
\[ = \frac{1}{2}\left( 2^{n + 2} - 4 + 3^n - 1 \right) \]
\[ = \frac{1}{2}\left( 2^{n + 2} + 3^n - 5 \right)\]
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Find the geometric means of the following pairs of number:
2 and 8
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
For the G.P. if a = `7/243`, r = 3 find t6.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. If t4 = 16, t9 = 512, find S10
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
The sum or difference of two G.P.s, is again a G.P.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.