Advertisements
Advertisements
प्रश्न
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
उत्तर
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right]\]
\[ = \sum^{10}_{n = 1} \left( \frac{1}{2} \right)^{n - 1} + \sum^{10}_{n = 1} \left( \frac{1}{5} \right)^{n + 1} \]
\[ = \left\{ 1 + \frac{1}{2} + \frac{1}{4} + . . . + \left( \frac{1}{2} \right)^9 \right\} + \left\{ \frac{1}{5^2} + \frac{1}{5^3} + \frac{1}{5^4} + . . . + \frac{1}{5^{11}} \right\}\]
\[ = 1\left( \frac{1 - \left( \frac{1}{2} \right)^{10}}{1 - \frac{1}{2}} \right) + \frac{1}{25}\left( \frac{1 - \left( \frac{1}{5} \right)^{10}}{1 - \frac{1}{5}} \right) \]
\[ = \left( \frac{2^{10} - 1}{2^9} \right) + \left( \frac{5^{10} - 1}{4 \times 5^{11}} \right)\]
APPEARS IN
संबंधित प्रश्न
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c are in G.P., then prove that:
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
The third term of G.P. is 4. The product of its first 5 terms is ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum or difference of two G.P.s, is again a G.P.