Advertisements
Advertisements
प्रश्न
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
उत्तर
Let the terms of the G.P be \[\frac{a}{r},\text { a and ar .}\]
∴ Product of the G.P. = 1
\[\Rightarrow a^3 = 1\]
\[ \Rightarrow a = 1\]
Now, sum of the G.P. = \[\frac{39}{10}\]
\[\Rightarrow \frac{a}{r} + a + ar = \frac{39}{10}\]
\[ \Rightarrow a\left( \frac{1}{r} + 1 + r \right) = \frac{39}{10}\]
\[ \Rightarrow 1\left( \frac{1}{r} + 1 + r \right) = \frac{39}{10}\]
\[ \Rightarrow 10 r^2 + 10r + 10 = 39r\]
\[ \Rightarrow 10 r^2 - 29r + 10 = 0\]
\[ \Rightarrow 10 r^2 - 25r - 4r + 10 = 0\]
\[ \Rightarrow 5r(2r - 5) - 2(2r - 5) = 0\]
\[ \Rightarrow \left( 5r - 2 \right)\left( 2r - 5 \right) = 0\]
\[ \Rightarrow r = \frac{2}{5}, \frac{5}{2}\]
Hence, putting the values of a and r , the required numbers are \[\frac{5}{2}, 1, \frac{2}{5} \text { or } \frac{2}{5}, 1 \text { and }\frac{5}{2}\].
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Given a G.P. with a = 729 and 7th term 64, determine S7.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if a = `7/243`, r = 3 find t6.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.