मराठी

The Sum of First Three Terms of a G.P. is 39 10 and Their Product is 1. Find the Common Ratio and the Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

उत्तर

Let the terms of the G.P be \[\frac{a}{r},\text {  a and ar .}\]

∴ Product of the G.P. = 1 

\[\Rightarrow a^3 = 1\]

\[ \Rightarrow a = 1\]

Now, sum of the G.P. = \[\frac{39}{10}\]

\[\Rightarrow \frac{a}{r} + a + ar = \frac{39}{10}\]

\[ \Rightarrow a\left( \frac{1}{r} + 1 + r \right) = \frac{39}{10}\]

\[ \Rightarrow 1\left( \frac{1}{r} + 1 + r \right) = \frac{39}{10}\]

\[ \Rightarrow 10 r^2 + 10r + 10 = 39r\]

\[ \Rightarrow 10 r^2 - 29r + 10 = 0\]

\[ \Rightarrow 10 r^2 - 25r - 4r + 10 = 0\]

\[ \Rightarrow 5r(2r - 5) - 2(2r - 5) = 0\]

\[ \Rightarrow \left( 5r - 2 \right)\left( 2r - 5 \right) = 0\]

\[ \Rightarrow r = \frac{2}{5}, \frac{5}{2}\]

Hence, putting the values of a and r the required numbers are \[\frac{5}{2}, 1, \frac{2}{5} \text { or } \frac{2}{5}, 1 \text { and }\frac{5}{2}\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.2 | Q 5 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


For a G.P. If t3 = 20 , t6 = 160 , find S7


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×