Advertisements
Advertisements
प्रश्न
Express the following recurring decimal as a rational number:
`2.bar(4)`
उत्तर
`2.bar(4)` = 2 + 0.4 + 0.04 + 0.004 + ... ...(1)
These terms after the first term form a G.P. whose first term is a = 0.4 and common ratio = r = 0.1
Since |r| = |0.1| = 0.1 < 1, the sum to infinity of this G.P. exists and
S = `"a"/(1 - "r")`
= `0.4/(1 - 0.1)`
= `0.4/0.9`
= `4/9`
∴ from (1), `2.bar(4) = 2 + 4/9 = 22/9`
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Find the geometric means of the following pairs of number:
a3b and ab3
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The fractional value of 2.357 is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
The third term of G.P. is 4. The product of its first 5 terms is ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.