Advertisements
Advertisements
प्रश्न
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
उत्तर
\[\left( a^2 + b^2 + c^2 \right) p^2 - 2\left( ab + bc + cd \right)p + \left( b^2 + c^2 + d^2 \right) \leq 0\]
\[ \Rightarrow \left( a^2 p^2 + b^2 p^2 + c^2 p^2 \right) - 2\left( abp + bcp + cdp \right) + \left( b^2 + c^2 + d^2 \right) \leq 0\]
\[ \Rightarrow \left( a^2 p^2 - 2abp + b^2 \right) + \left( b^2 p^2 - 2bcp + c^2 \right) + \left( c^2 p^2 - 2cdp + d^2 \right) \leq 0\]
\[ \Rightarrow \left( ap - b \right)^2 + \left( bp - c \right)^2 + \left( cp - d \right)^2 \leq 0\]
\[ \Rightarrow \left( ap - b \right)^2 + \left( bp - c \right)^2 + \left( cp - d \right)^2 = 0\]
\[ \Rightarrow \left( ap - b \right)^2 = 0 \]
\[ \Rightarrow p = \frac{b}{a}\]
\[\text { Also }, \left( bp - c \right)^2 = 0 \]
\[ \Rightarrow p = \frac{c}{b}\]
\[\text { Similiarly }, \Rightarrow \left( cp - d \right)^2 = 0 \]
\[ \Rightarrow p = \frac{d}{c}\]
\[ \therefore \frac{b}{a} = \frac{c}{b} = \frac{d}{c}\]
\[\text { Thus, a, b, c and d are in G . P } .\]
APPEARS IN
संबंधित प्रश्न
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
Find the geometric means of the following pairs of number:
2 and 8
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
The third term of a G.P. is 4, the product of the first five terms is ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.