Advertisements
Advertisements
प्रश्न
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
उत्तर
We have,
\[ a_1 = 4, a_2 = - 2, a_3 = 1, a_4 = - \frac{1}{2}\]
\[\text { Now }, \frac{a_2}{a_1} = \frac{- 2}{4} = \frac{- 1}{2}, \frac{a_3}{a_2} = \frac{1}{- 2}, \frac{a_4}{a_3} = \frac{- \frac{1}{2}}{1} = \frac{- 1}{2}\]
\[ \therefore \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \frac{- 1}{2}\]
\[\text { Thus, } a_1 , a_2 , a_3 \text { and } a_4\text { are in G . P . , where a = 4 and }r = \frac{- 1}{2} .\]
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Find the geometric means of the following pairs of number:
−8 and −2
If logxa, ax/2 and logb x are in G.P., then write the value of x.
The two geometric means between the numbers 1 and 64 are
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. If t3 = 20 , t6 = 160 , find S7
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Find : `sum_("n" = 1)^oo 0.4^"n"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.