Advertisements
Advertisements
प्रश्न
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
उत्तर
Here, common ratio, r = 3
nth term, an = 486
Sn = 728
\[a_n = 486 \]
\[ \Rightarrow a r^{n - 1} = 486\]
\[ \Rightarrow a \left( 3 \right)^{n - 1} = 486 \]
\[ \Rightarrow a \left( 3 \right)^n = 486 \times 3 \]
\[ \Rightarrow a \left( 3 \right)^n = 1458 . . . \left( i \right)\]
\[\text { Now, } S_n = 728\]
\[ \Rightarrow 728 = a \left( \frac{3^n - 1}{3 - 1} \right) \]
\[ \Rightarrow 728 = \left\{ \frac{a \left( 3 \right)^n - a}{2} \right\}\]
\[ \Rightarrow 1456 = a \left( 3 \right)^{n - 1} - a \]
\[ \Rightarrow 1456 = 1458 - a \left[ \text { From } \left( i \right) \right]\]
\[ \Rightarrow a = 1458 - 1456 \]
\[ \Rightarrow a = 2\]
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Find the geometric means of the following pairs of number:
2 and 8
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
The numbers x − 6, 2x and x2 are in G.P. Find x
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.