मराठी

If the G.P.'S 5, 10, 20, ... and 1280, 640, 320, ... Have Their Nth Terms Equal, Find the Value of N. - Mathematics

Advertisements
Advertisements

प्रश्न

If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.

उत्तर

\[\text { Given }: \]

\[\text { First term, } a = 5 \]

\[\text { Common ratio }, r = 2\]

\[ a_n = \left( 5 \right) \left( 2 \right)^{n - 1} . . . \left( 1 \right)\]

\[\text { Similarly, } a_n = \left( 1280 \right) \left( \frac{1}{2} \right)^{n - 1} . . . \left( 2 \right)\]

\[\text { From }\left( 1 \right) \text { and } \left( 2 \right)\]

\[\left( 5 \right) \left( 2 \right)^{n - 1} = \left( 1280 \right) \left( \frac{1}{2} \right)^{n - 1} \]

\[ \Rightarrow \frac{1}{256} = \left( \frac{1}{4} \right)^{n - 1} \]

\[ \Rightarrow \left( \frac{1}{4} \right)^4 = \left( \frac{1}{4} \right)^{n - 1} \]

\[ \Rightarrow n - 1 = 4 \]

\[ \Rightarrow n = 5\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.1 | Q 11 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The third term of G.P. is 4. The product of its first 5 terms is ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×